1
0
mirror of https://github.com/Rogiel/l2jserver2 synced 2025-12-08 08:23:11 +00:00

Change-Id: I0000000000000000000000000000000000000000

Change-Id: I8636776eaf000fcdfb528cc403710f6d6ee9e73e
Change-Id: Iebc523681d07ecd6d7b7e89343b29a8034558f94
This commit is contained in:
rogiel
2011-05-07 01:06:17 -03:00
parent 81d2babede
commit 51aea46020
100 changed files with 2505 additions and 406 deletions

View File

@@ -16,9 +16,10 @@ public class BufferUtil {
}
public static final void writeString(ChannelBuffer buffer, String str) {
for (char c : str.toCharArray()) {
buffer.writeChar(c);
}
buffer.writeChar(0x00);
if (str != null)
for (char c : str.toCharArray()) {
buffer.writeChar(c);
}
buffer.writeChar('\000');
}
}

View File

@@ -5,7 +5,7 @@ public class Coordinate {
private final int y;
private final int z;
public Coordinate(int x, int y, int z) {
protected Coordinate(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
@@ -22,9 +22,13 @@ public class Coordinate {
public int getZ() {
return z;
}
public int getDistance(Coordinate other) {
//TODO calculation
// TODO calculation
return x + y + z;
}
public static Coordinate fromXYZ(int x, int y, int z) {
return new Coordinate(x, y, z);
}
}

View File

@@ -11,26 +11,23 @@ package com.l2jserver.util;
import java.util.Arrays;
/*
* Modified for Trove to use the java.util.Arrays sort/search
* algorithms instead of those provided with colt.
*/
/**
* Used to keep hash table capacities prime numbers.
* Not of interest for users; only for implementors of hashtables.
*
* <p>Choosing prime numbers as hash table capacities is a good idea
* to keep them working fast, particularly under hash table
* expansions.
*
* <p>However, JDK 1.2, JGL 3.1 and many other toolkits do nothing to
* keep capacities prime. This class provides efficient means to
* choose prime capacities.
*
* <p>Choosing a prime is <tt>O(log 300)</tt> (binary search in a list
* of 300 ints). Memory requirements: 1 KB static memory.
*
* Used to keep hash table capacities prime numbers. Not of interest for users;
* only for implementors of hashtables.
*
* <p>
* Choosing prime numbers as hash table capacities is a good idea to keep them
* working fast, particularly under hash table expansions.
*
* <p>
* However, JDK 1.2, JGL 3.1 and many other toolkits do nothing to keep
* capacities prime. This class provides efficient means to choose prime
* capacities.
*
* <p>
* Choosing a prime is <tt>O(log 300)</tt> (binary search in a list of 300
* ints). Memory requirements: 1 KB static memory.
*
* @author wolfgang.hoschek@cern.ch
* @version 1.0, 09/24/99
*/
@@ -39,119 +36,224 @@ public final class PrimeFinder {
* The largest prime this class can generate; currently equal to
* <tt>Integer.MAX_VALUE</tt>.
*/
public static final int LARGEST_PRIME = Integer.MAX_VALUE; //yes, it is prime.
public static final int LARGEST_PRIME = Integer.MAX_VALUE; // yes, it is
// prime.
/**
* The prime number list consists of 11 chunks.
*
*
* Each chunk contains prime numbers.
*
* A chunk starts with a prime P1. The next element is a prime
* P2. P2 is the smallest prime for which holds: P2 >= 2*P1.
*
* The next element is P3, for which the same holds with respect
* to P2, and so on.
*
* Chunks are chosen such that for any desired capacity >= 1000
* the list includes a prime number <= desired capacity * 1.11.
*
* Therefore, primes can be retrieved which are quite close to any
* desired capacity, which in turn avoids wasting memory.
*
*
* A chunk starts with a prime P1. The next element is a prime P2. P2 is the
* smallest prime for which holds: P2 >= 2*P1.
*
* The next element is P3, for which the same holds with respect to P2, and
* so on.
*
* Chunks are chosen such that for any desired capacity >= 1000 the list
* includes a prime number <= desired capacity * 1.11.
*
* Therefore, primes can be retrieved which are quite close to any desired
* capacity, which in turn avoids wasting memory.
*
* For example, the list includes
* 1039,1117,1201,1277,1361,1439,1523,1597,1759,1907,2081.
*
* So if you need a prime >= 1040, you will find a prime <=
* 1040*1.11=1154.
*
*
* So if you need a prime >= 1040, you will find a prime <= 1040*1.11=1154.
*
* Chunks are chosen such that they are optimized for a hashtable
* growthfactor of 2.0;
*
*
* If your hashtable has such a growthfactor then, after initially
* "rounding to a prime" upon hashtable construction, it will
* later expand to prime capacities such that there exist no
* better primes.
*
* In total these are about 32*10=320 numbers -> 1 KB of static
* memory needed.
*
* "rounding to a prime" upon hashtable construction, it will later expand
* to prime capacities such that there exist no better primes.
*
* In total these are about 32*10=320 numbers -> 1 KB of static memory
* needed.
*
* If you are stingy, then delete every second or fourth chunk.
*/
private static final int[] PRIME_CAPACITIES = {
//chunk #0
LARGEST_PRIME,
//chunk #1
5,11,23,47,97,197,397,797,1597,3203,6421,12853,25717,51437,102877,205759,
411527,823117,1646237,3292489,6584983,13169977,26339969,52679969,105359939,
210719881,421439783,842879579,1685759167,
//chunk #2
433,877,1759,3527,7057,14143,28289,56591,113189,226379,452759,905551,1811107,
3622219,7244441,14488931,28977863,57955739,115911563,231823147,463646329,927292699,
1854585413,
//chunk #3
953,1907,3821,7643,15287,30577,61169,122347,244703,489407,978821,1957651,3915341,
7830701,15661423,31322867,62645741,125291483,250582987,501165979,1002331963,
2004663929,
//chunk #4
1039,2081,4177,8363,16729,33461,66923,133853,267713,535481,1070981,2141977,4283963,
8567929,17135863,34271747,68543509,137087021,274174111,548348231,1096696463,
//chunk #5
31,67,137,277,557,1117,2237,4481,8963,17929,35863,71741,143483,286973,573953,
1147921,2295859,4591721,9183457,18366923,36733847,73467739,146935499,293871013,
587742049,1175484103,
//chunk #6
599,1201,2411,4831,9677,19373,38747,77509,155027,310081,620171,1240361,2480729,
4961459,9922933,19845871,39691759,79383533,158767069,317534141,635068283,1270136683,
//chunk #7
311,631,1277,2557,5119,10243,20507,41017,82037,164089,328213,656429,1312867,
2625761,5251529,10503061,21006137,42012281,84024581,168049163,336098327,672196673,
1344393353,
//chunk #8
3,7,17,37,79,163,331,673,1361,2729,5471,10949,21911,43853,87719,175447,350899,
701819,1403641,2807303,5614657,11229331,22458671,44917381,89834777,179669557,
359339171,718678369,1437356741,
//chunk #9
43,89,179,359,719,1439,2879,5779,11579,23159,46327,92657,185323,370661,741337,
1482707,2965421,5930887,11861791,23723597,47447201,94894427,189788857,379577741,
759155483,1518310967,
//chunk #10
379,761,1523,3049,6101,12203,24407,48817,97649,195311,390647,781301,1562611,
3125257,6250537,12501169,25002389,50004791,100009607,200019221,400038451,800076929,
1600153859
};
static { //initializer
// chunk #0
LARGEST_PRIME,
// chunk #1
5, 11, 23, 47, 97, 197,
397,
797,
1597,
3203,
6421,
12853,
25717,
51437,
102877,
205759,
411527,
823117,
1646237,
3292489,
6584983,
13169977,
26339969,
52679969,
105359939,
210719881,
421439783,
842879579,
1685759167,
// chunk #2
433, 877, 1759,
3527,
7057,
14143,
28289,
56591,
113189,
226379,
452759,
905551,
1811107,
3622219,
7244441,
14488931,
28977863,
57955739,
115911563,
231823147,
463646329,
927292699,
1854585413,
// chunk #3
953, 1907, 3821, 7643,
15287,
30577,
61169,
122347,
244703,
489407,
978821,
1957651,
3915341,
7830701,
15661423,
31322867,
62645741,
125291483,
250582987,
501165979,
1002331963,
2004663929,
// chunk #4
1039, 2081, 4177, 8363, 16729,
33461,
66923,
133853,
267713,
535481,
1070981,
2141977,
4283963,
8567929,
17135863,
34271747,
68543509,
137087021,
274174111,
548348231,
1096696463,
// chunk #5
31, 67, 137, 277, 557, 1117, 2237, 4481, 8963, 17929, 35863, 71741,
143483,
286973,
573953,
1147921,
2295859,
4591721,
9183457,
18366923,
36733847,
73467739,
146935499,
293871013,
587742049,
1175484103,
// chunk #6
599, 1201, 2411, 4831, 9677, 19373, 38747, 77509, 155027, 310081,
620171, 1240361,
2480729,
4961459,
9922933,
19845871,
39691759,
79383533,
158767069,
317534141,
635068283,
1270136683,
// chunk #7
311, 631, 1277, 2557, 5119, 10243, 20507, 41017, 82037, 164089,
328213, 656429, 1312867, 2625761, 5251529,
10503061,
21006137,
42012281,
84024581,
168049163,
336098327,
672196673,
1344393353,
// chunk #8
3, 7, 17, 37, 79, 163, 331, 673, 1361, 2729, 5471, 10949, 21911,
43853, 87719, 175447, 350899, 701819, 1403641, 2807303, 5614657,
11229331, 22458671, 44917381,
89834777,
179669557,
359339171,
718678369,
1437356741,
// chunk #9
43, 89, 179, 359, 719, 1439, 2879, 5779, 11579, 23159, 46327,
92657, 185323, 370661, 741337, 1482707, 2965421, 5930887, 11861791,
23723597, 47447201, 94894427, 189788857, 379577741,
759155483,
1518310967,
// chunk #10
379, 761, 1523, 3049, 6101, 12203, 24407, 48817, 97649, 195311,
390647, 781301, 1562611, 3125257, 6250537, 12501169, 25002389,
50004791, 100009607, 200019221, 400038451, 800076929, 1600153859 };
static { // initializer
// The above prime numbers are formatted for human readability.
// To find numbers fast, we sort them once and for all.
Arrays.sort(PRIME_CAPACITIES);
}
/**
* Returns a prime number which is <code>&gt;= desiredCapacity</code>
* and very close to <code>desiredCapacity</code> (within 11% if
* Returns a prime number which is <code>&gt;= desiredCapacity</code> and
* very close to <code>desiredCapacity</code> (within 11% if
* <code>desiredCapacity &gt;= 1000</code>).
*
* @param desiredCapacity the capacity desired by the user.
*
* @param desiredCapacity
* the capacity desired by the user.
* @return the capacity which should be used for a hashtable.
*/
public static final int nextPrime(int desiredCapacity) {
int i = Arrays.binarySearch(PRIME_CAPACITIES, desiredCapacity);
if (i<0) {
if (i < 0) {
// desired capacity not found, choose next prime greater
// than desired capacity
i = -i -1; // remember the semantics of binarySearch...
i = -i - 1; // remember the semantics of binarySearch...
}
return PRIME_CAPACITIES[i];
}

View File

@@ -5,7 +5,7 @@ public class RGBColor {
private final byte green;
private final byte blue;
public RGBColor(byte r, byte g, byte b) {
protected RGBColor(byte r, byte g, byte b) {
this.red = r;
this.green = g;
this.blue = b;
@@ -35,4 +35,13 @@ public class RGBColor {
public byte[] toByteArray() {
return new byte[] { red, green, blue };
}
public static RGBColor fromByteArray(byte[] rgb) {
return new RGBColor(rgb[0], rgb[1], rgb[2]);
}
public static RGBColor fromInteger(int color) {
return new RGBColor((byte) (color << 0), (byte) (color << 8),
(byte) (color << 16));
}
}